Pressure of a gas

Dr. A. Mohamed Saleem

Associate Professor
PG \& Research Department of Physics
Jamal Mohamed College (Autonomous)
Tiruchirappalli-620020

Pressure of a gas

Consider a cubical vessel ABCDEFGH containing gas.

The volume of the vessel $=l^{3} c c$
m - mass of each molecule n - number of molecules

Consider a molecule P moving in a random direction with velocity C_{1}.

The velocity components are u_{1}, v_{1} and w_{1} along XYZ axes.

Therefore the resultant velocity is

$$
C_{1}^{2}=u_{1}^{2}+v_{1}^{2}+w_{1}^{2}
$$

Let the molecule strike on the wall BCFG with velocity u_{1} then the momentum is $m u_{1}$.
The same molecule strike on the opposite wall ADEH then the momentum is $-m u_{1}$.

The change in momentum due to impact

$$
m u_{1}-\left(-m u_{1}\right)=2 m u_{1}
$$

The time interval between two successive impacts on the wall BCFG is

$$
t=\frac{\text { distance covered }}{\text { velocity along } X \text { axis }}=\frac{2 l}{u_{1}}
$$

$$
\text { No. impacts per second }=\frac{1}{t}=\frac{1}{\frac{2 l}{u_{1}}}=\frac{u_{1}}{2 l}
$$

Change in momentum produced in one second
due to the impact of this molecule $=2 m u_{1} \times \frac{u_{1}}{2 l}=\frac{m u_{1}{ }^{2}}{l}$

The force Fx due to the impact of all the n molecules in one second

$$
=\frac{m}{l}\left[u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}\right]
$$

Force per unit area on the wall BCFG or ADEH is equal to the pressure Px

$$
P_{X}=\frac{m}{l \times l^{2}}\left[u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}\right]
$$

Similarly the pressure P_{Y} on the walls CDEF and ABGH

$$
P_{Y}=\frac{m}{l \times l^{2}}\left[v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right]
$$

$$
\begin{aligned}
& u_{1}=\frac{l}{t} \\
& \frac{u_{1}}{l}=\frac{1}{t} \\
& \text { force }=\frac{p}{t} \\
& =p \times \frac{1}{t} \\
& =m u_{1} \times \frac{u_{1}}{l} \\
& =\frac{m}{l} u_{1}{ }^{2}
\end{aligned}
$$

Similarly the pressure P_{Z} on the walls $A B C D$ and EFGH

$$
P_{Z}=\frac{m}{l \times l^{2}}\left[w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}\right]
$$

As the pressure of the gas is same in all directions, the mean pressure P is

$$
\begin{gathered}
P=\frac{P_{X}+P_{Y}+P_{Z}}{3} \\
=\frac{m}{3 l^{3}}\left[\begin{array}{c}
\left(u_{1}^{2}+v_{1}^{2}+w_{1}^{2}\right)+\left(u_{2}^{2}+v_{2}^{2}+w_{2}^{2}\right)+\left(u_{3}^{2}+v_{3}^{2}+w_{3}^{2}\right) \\
\ldots+\left(u_{n}^{2}+v_{n}^{2}+w_{n}^{2}\right)
\end{array}\right] \\
=\frac{m}{3 l^{3}}\left[{C_{1}}^{2}+{C_{2}}^{2}+{C_{3}}^{2} \ldots+C_{n}^{2}\right]---(i)
\end{gathered}
$$

But $V=l^{3}$. Let C be the r.m.s velocity of the molecules

$$
\begin{aligned}
& C^{2}=\frac{C_{1}^{2}+C_{2}^{2}+C_{3}^{2} \ldots+C_{n}^{2}}{n} \\
& n C^{2}=C_{1}^{2}+C_{2}^{2}+C_{3}^{2} \ldots+C_{n}^{2}
\end{aligned}
$$

Sub in (i)

$$
\begin{aligned}
& P=\frac{m \cdot n C^{2}}{3 V}=\frac{M C^{2}}{3 V}=\frac{\rho C^{2}}{3} \\
& C^{2}=\frac{3 P}{\rho}
\end{aligned}
$$

r.m.s velocity of the molecules $C=\sqrt{\frac{3 P}{\rho}}$

